Going Deep on Spallation Backgrounds

John Beacom, The Ohio State University

The Ohio State University's Center for Cosmology and AstroParticle Physics

MeV Neutrinos – What are They Good For?

Solar

Reactor

Supernova

Atmospheric

Why is Progress Stalled?

Is it a lack of interesting questions?

No

Is it a lack of big detectors?

Sort of

Is if fixable?

Yes

Plan of the Talk

Introductory exhortation

Revolutionizing MeV neutrino astronomy

Spallation: the haunting

Spallation: the summoning

Spallation: the vengeance

Back to the future with neutrino physics

_				
$\mathbf{p}_{\mathbf{o}}$	lutionizing	$N/I \cap V/I$	noutrino	astronomy
nevui	IUUOIIIZIIIR	IVIEV	HEULHIO	asuununv

Basic Features of MeV Neutrino Detection

Detectors must be massive:

Effectiveness depends on volume, not area

Example signals:

$$\nu + e^- \to \nu + e^-$$

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

Detectors must be quiet:

Need low natural and induced radioactivities

Example backgrounds:

$$A(Z,N) \to A(Z+1,N-1) + e^- + \bar{\nu}_e$$

First: Get Multi-kton-Scale Neutrino Detectors Super-K JUNO DUNE

32 kton water
Japan
running

20 kton oil China building 34 kton liquid argon United States proposing

Excellent performance or prospects for neutrino astronomy

Second: Enable Super-K Selection of Nuebar

The signal reaction produces a neutron, but most backgrounds do not

Beacom and Vagins (2004): First proposal to use dissolved gadolinium in large light water detectors showing it could be practical and effective

 $\bar{\nu}_e + p \rightarrow e^+ + n$

Neutron capture on protons Gamma-ray energy 2.2 MeV Hard to detect in SK

Neutron capture on gadolinium Gamma-ray energy ~ 8 MeV Easily detectable coincidence separated by ~ 4 cm and ~ 20 μs

Mad Scientist at Work in Underground Lair

Adding 383 grams $Gd_2(SO_4)_3$ to 191 liters of H_2O ; January 5th, 2011

Water and Gadolinium Filtration System

Fate of the GADZOOKS! Proposal

For about 10 years:

Vagins and colleagues developed experimental aspects Beacom and colleagues developed theoretical aspects

Super-K 2015: Yes

[41] Ref. [4] proposed adding a 0.2% gadolinium solution into the SK water. After exhaustive studies, on June 27, 2015, the SK Collaboration formally approved the concept, officially initiating the SuperK-Gd project, which will enhance anti-neutrino detectability (along with other physics capabilities) by dissolving 0.2% gadolinium sulfate by mass in the SK water.

Will greatly increase sensitivity for many studies

Third: Remove Detector Backgrounds

After strong cuts, still large detector backgrounds in Super-K

Signal is neutrino-electron scattering

Background is beta decays

What causes the backgrounds and can we remove them?

Muon-Induced Spallation Decay Backgrounds

Muon passes through detector Beta decays follow; veto in cylinder

Muon rate 2 Hz; betas to ~ 30 s Cuts face inefficiency or deadtime

Examples of Spallation Backgrounds

Spallation: the haunting

Li and Beacom 2014 [arXiv:1402.4687] Isotopes are made by muon secondaries and are calculable

Muons and their Energy Losses

Typical muon energy is 250 GeV; typical energy loss is 8 GeV

Secondary Particles and their Properties

Secondaries are abundant, low-energy, and near the track

Spallation Yields and their Parents

Isotope	Half-life (s)	Yield (E > 3.5 MeV) (×10 ⁻⁷ μ ⁻¹ g ⁻¹ cm ²)	Primary process
n			
¹⁸ N	0.624	0.01	¹⁸ O(n,p)
^{17}N	4.173	0.02	$^{18}O(n,n+p)$
^{16}N	7.13	18	(n,p)
$^{16}\mathrm{C}$	0.747	0.003	$(\pi^-,n+p)$
$^{15}\mathrm{C}$	2.449	0.28	(n,2p)
$^{14}\mathrm{B}$	0.0138	0.02	(n,3p)
^{13}O	0.0086	0.24	$(\mu^-,p+2n+\mu^-+\pi^-)$
$^{13}\mathrm{B}$	0.0174	1.6	$(\pi^-,2p+n)$
^{12}N	0.0110	1.1	$(\pi^{+},2p+2n)$
$^{12}\mathrm{B}$	0.0202	9.8	$(n,\alpha+p)$
$^{12}\mathrm{Be}$	0.0236	0.08	$(\pi^-, \alpha + p + n)$
$^{11}{ m Be}$	13.8	0.54	$(n,\alpha+2p)$
$^{11}{ m Li}$	0.0085	0.01	$(\pi^+,5p+\pi^++\pi^0)$
$^{9}\mathrm{C}$	0.127	0.69	$(n,\alpha+4n)$
$^9{ m Li}$	0.178	1.5	$(\pi^-,\alpha+2p+n)$
$^{8}\mathrm{B}$	0.77	5.0	$(\pi^+, \alpha + 2p + 2n)$
$^8\mathrm{Li}$	0.838	11	$(\pi^-,\alpha+^2H+p+n)$
⁸ He	0.119	0.16	$(\pi^-, ^3H+4p+n)$

Spallation yields vary greatly, depend on MeV reactions

Spallation Decays and their Properties

Time and energy distributions agree with Super-K data

Spallation: the summoning

Li and Beacom 2015a [arXiv:1503.04823] Isotopes are made in showers and are calculable

Showers in Concept and Practice

High-energy particles make showers

Secondary Path Length Spectra from Showers

Path length spectra from showers are near universal

Muon-Induced Showers and their Properties

Muons make showers of different types, broad spectrum

Light and Isotope Production by Showers

EM showers make light but not isotopes; hadronic is opposite

Correlations of Showers and Isotopes

Isotope production follows muon energy loss

Spallation: the vengeance

Li and Beacom 2015b [arXiv:1508.05389] Isotope production can be identified and localized

Showers Produce Lots of Light

Can we reconstruct the shower?

Where is the Shower?

Left shows Monte Carlo truth; right shows Super-K reality

Reconstruction Using all PMT Hits

We can rebuild it

Bespoke Cuts for Every Muon

Harder cuts, smaller volume: better efficiency, less deadtime

Eliminating Spallation Backgrounds

First cut:

Rare but dangerous high-energy showers

Second cut:

Restrict cuts to near shower positions

Third cut (in devel.):

Rare but dangerous hadronic showers

Super-K is already adopting our techniques; more to come Expect to reduce backgrounds in all MeV detectors by ~ 10

Back to the future with neutrino physics

MeV Neutrinos – What are They Good For?

Solar

Reactor

John Beacom, The Ohio State University

Supernova

Atmospheric

Examples of Spallation Backgrounds

Take-Away Messages

Important physics depends on detecting MeV neutrinos

With better detectors, signal ID, and backgrounds, we can

Understanding spallation backgrounds is a new opportunity

Theoretical insights are crucial to progress

Backgrounds are made by secondaries

Secondaries are made in showers

Showers can be identified and localized

Applicability to a wide range of underground detectors

Shirley Li is applying for postdocs this fall:

Works on neutrino physics and detection, also neutron stars

Center for Cosmology and AstroParticle Physics

The Ohio State University's Center for Cosmology and AstroParticle Physics

Columbus, Ohio: 1 million people (city), 2 million people (city+metro)

Ohio State University: 56,000 students

Physics: 55 faculty, Astronomy: 20 faculty

CCAPP: 20 faculty, 10 postdocs from both departments

Placements: In 2014 alone, 12 CCAPP alumni got permanent-track jobs

ccapp.osu.edu

Recent faculty hires: Antonio Boveia, Linda Carpenter, Chris Hirata, Adam Leroy, Laura Lopez, Annika Peter

Recent PD hires: Ami Choi, Alexia Lewis, Niall MacCran, Tuguldur

Sukhbold, Michael Troxel, Ying Zu, ... and Francesco Capozzi

CCAPP Postdoctoral Fellowship applications welcomed this Fall